Hydraulic Crawler Crane

1100G

Max. Lifting Capacity : **110 t x 3.6 m *** Max. Crane Boom Length : **70.1 m** Max. Fixed Jib Combination: **61.0 m + 21.3 m**

* Auxiliary sheave is necessary.

Model : CKE1100G

م کھڑ

Ð

R

CKE1100G CONTENTS

3	SPECIFICATIONS
5	GENERAL DIMENSIONS
6	BOOM AND JIB ARRANGEMENTS
7	WORKING RANGES
10	SUPPLEMENTAL DATA
11	LIFTING CAPACITIES
16	SUPPLEMENTAL DATA FOR CLAMSHELL
17	LIFTING CAPACITIES
18	SUPPLEMENTAL DATA FOR REDUCED WEIGHTS
19	LIFTING CAPACITIES
20	TRANSPORTATION PLAN
21	PARTS AND ATTACHMENTS

SPECIFICATIONS

Power Plant

Model: HINO J08E-UV

Type: 4 cycle, water-cooled, vertical in-line 6, direct injection, turbo-charger, intercooler

Complies with NRMM (Europe) Stage IIIB and US EPA Interim Tier 4

Displacement: 7,684 liters

Rated power: 213 kW/2,100 min-1

Max. Torque: 1,017 N·m/1,600 min⁻¹

Cooling System: Water-cooled

Starter: 24V-5kW

Radiator: Corrugated type core, thermostatically controlled Air cleaner: Dry type with replaceable paper element

Throttle: Twist grip type hand throttle, electrically actuated Fuel filter: Replaceable paper element

Batteries: Two 12V x 136 Ah/5HR capacity batteries, series connected

Fuel tank capacity: 400 liters

Hydraulic System

Main pumps: 4 variable displacement piston pumps Control: Full-flow hydraulic control system for infinitely variable pressure to all winches, propel and swing. Controls respond instantly to the touch, delivering smooth function operation. Cooling: Oil-to-air heat exchanger (plate-fin type)

Filtration: Full-flow and bypass type with replaceable element Max. relief valve pressure:

Load hoist, boom hoist and propel system: 31.9 MPa Swing system: 27.5 MPa

Control system: 5.4 MPa Hydraulic Tank Capacity: 535 liters

Boom Hoisting System

Powered by a hydraulic motor through a planetary reducer. **Brake:** A spring-set, hydraulically released multiple-disc brake is mounted on the boom hoist motor and operated through a counter-balance valve.

Drum Lock: External ratchet for locking drum

Drum: Single drum, grooved for 20 mm dia. wire rope **Line Speed:** Single line on first drum layer

Hoisting/Lowering: 48 to 2 m/min Boom hoisting/lowering: 20mm x 155 m

Boom guy line: 34 mm

Boom backstops: Required for all boom length

Load Hoisting System

Front and rear drums for load hoist powered by a hydraulic variable plunger motors, driven through planetary reducers. **Negative Brake:** A spring-set, hydraulically released multiple-

disc brake is mounted on the hoist motor and operated through a counter-balance valve. (Positive free fall brake is optional) **Drum Lock:** External ratchet for locking drum **Drums:**

Front Drums:

614 mm P.C.D x 617 mm wide drum, grooved for 26 mm wire rope. Rope capacity is 265 m working length and 360 m storage length.

Rear Drum: 614 mm P.C.D x 617 mm grooved for 26 mm wire rope. Rope capacity is 235 m working length and 360 m storage length.

Diameter of wire rope

Main winch: 26 mm x 265 m **Aux. winch:** 26 mm x 235 m

Third winch: 26 mm x 190 m

Line Speed*:

Hoisting/lowering: 120 to 3 m/min

Line Pull:

Max. Line Pull*: 208 kN {21.2 tf} (Referential performance)

Rated Line Pull: 108 kN {11.0 tf} *Single line on first drum layer

Swing System

Swing unit is powered by hydraulic motor driving spur gears through planetary reducer, the swing system provides 360° rotation.

Swing parking brakes: A spring-set, hydraulically released multiple-disc brake is mounted on swing motor.

Swing circle: Single-row ball bearing with an integral internally cut swing gear.

Swing lock: Manually, four position lock for transportation **Swing Speed:** 3.2 min⁻¹

Upper Structure

Torsion-free precision machined upper frame. All components are located clearly and service friendly. Engine will with low noise level.

Counter weight: 34.6 ton

Cab & Control

Totally enclosed, full vision cab with safety glass, fully adjustable, high backed seat with a headrest and armrests, and intermittent wiper and window washer (skylight and front window).

Cab fittings:

Air conditioner, convenient compartment (for tool), cup holder, cigarette lighter, sun visor, roof blind, tinted glass, floor mat, footrest, and shoe tray

3

Lower Structure

Steel-welded carbody with axles. Crawler assemblies can be hydraulically extended for wide-track operation or retracted for transportation. Crawler belt tension is maintained by hydraulic jack force on the track-adjusting bearing block.

Carbodyweight: 6.5 ton

Crawler drive: Independent hydraulic propel drive is built into each crawler side frame. Each drive consists of a hydraulic motor propelling a driving tumbler through a planetary gear box. Hydraulic motor and gear box are built into the crawler side frame within the shoe width.

Crawler brakes: Spring-set, hydraulically released parking brakes are built into each propel drive.

Steering mechanism: A hydraulic propel system provides both skid steering (driving one track only) and counter-rotating steering (driving each track in opposite directions).

Track rollers: Sealed track rollers for maintenance-free operation.

Main Specifications (Model: CKE1100G)

Shoe (flat): 900 mm wide each crawler Max. gradeability: 40%

Weight

Attachment

Including upper and lower machine, 34.6 ton counterweight and 6.5 ton carbody weight, basic boom (or basic boom + basic jib), hook, and other accessories. Weight: 102 ton

Ground pressure: 95.4 kPa

Boom & Jib:

Welded lattice construction using tubular, high-tensile steel chords with pin connection between sections.

Boom and Jib length

	Min. Length (Min. combination)	Max. Length (Max. combination)		
Crane Boom	15.2 m	70.1 m		
Fixed lib	27.4 m + 9.1 m	61.0 m + 21.3 m		

Crane Boom Max. Lifting Capacity 110 t x 3.6 m *3 Max. Length 70.1 m Fixed Jib 10.9 t x 22.0 m Max. Lifting Capacity Max. Combination 61.0 m + 21.3 m Main & Aux. Winch 120 m/min Max. Line Speed (1st layer) Rated Line Pull (Single line) 108 kN {11.0 tf} Wire Rope Diameter 26 mm Wire Rope Length 265m (Main), 235 m (Aux.) Brake Type (Free fall) Wet-type multiple disc brake (Optional) Working Speed Swing Speed 3.2 min⁻¹{rpm} 1.4/1.0 km/h Travel Speed **Power Plant**

Hydraulic System	
Main Pums	4 variable displacement
Max. Pressure	31.9 Mpa {325 kg/cm ² }
Hydraulic Tank Capacity	535 liters
Self-Removal Device	
	counterweight/crawler self-removal device
Weight	counterweight/crawler self-removal device
Weight Operating Weight	counterweight/crawler self-removal device 102 t *1
U	
Operating Weight	102 t *1

Units are SI units. { } indicates conventional units.

Line speeds in table are for light loads. Line speed varies with load.

*1 Including upper and lower machine, 34.6 ton counterweight, 6.5 ton carbody weight, basic boom, hook, and other accessories.

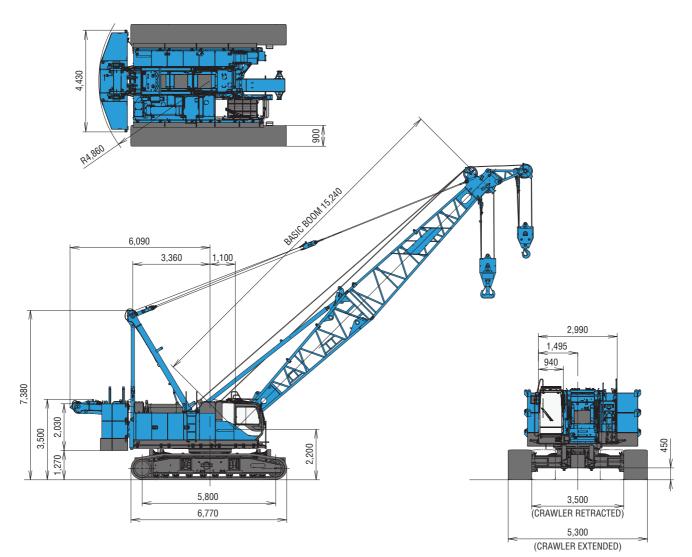
*2 Base machine with boom base, gantry, crawlers, and wire ropes (front/boom hoist)

*3 Auxiliary sheave is must.

Model

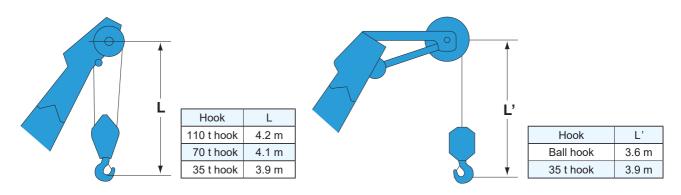
Fuel Tank

Engine Output


HINO J08E-UV

213 kW/2,100min⁻¹ 400 liters

GENERAL DIMENSIONS


Ŗ

(Unit: mm)

This catalog may contain photographs of machines with specifications, attachments and optional equipment.

Limit of Hook Lifting

BOOM AND JIB ARRANGEMENTS

Crane Boom Arrangements

Boom length m (ft)	Boom arrangement
15.2 (50)	
18.3 (60)	
21.3 (70)	
24.4 (80)	₩ ~ <u>B 10 20 1</u>
27.4 (90)	
30.5 (100)	
33.5 (110)	
36.6 (120)	% < <u>61 to 200 ^d 40A</u> <u>↑</u>
39.6 (130)	$ \underbrace{ \begin{array}{c} & & & \\ \hline B \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline } \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \\ \hline \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\
42.7 (140)	
45.7 (150)	$ \overset{\text{(b)}}{\longrightarrow} $

Boom							
length m (ft)	Boom arrangement						
48.8 (160)	₩ <b 10="" 20="" 40<="" td=""><td>40A T</td>	40A T					
51.8 (170)		40 40A T 40 40A T 40 40A T 40 40A T					
54.9 (180)	★						
57.9 (190)							
61.0 (200)	* B 10 20 40	0 40 40A T					
64.0 (210)							
67.1 (220)	* <u>B 10 20 20</u>	40 40 40A T					
70.1 (230)	₩ <u>B 10 10 20 20</u>						
Symbol	Boom Length	Remarks					
B	7.6 m	Boom Base					
	7.6 m	Boom Top					
10	3.0 m	Insert Boom					
	6.1 m	Insert Boom					

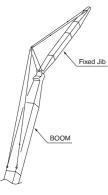
mark shows the boom insert with lug attached and the guy line installing position when the fixed jib is used.

Insert Boom

Insert Boom with lug

% mark shows the standard boom arrangement which make the boom arrangement of less than the each boom length possible.

o mark shows the installing of the cable roller for the insert boom.

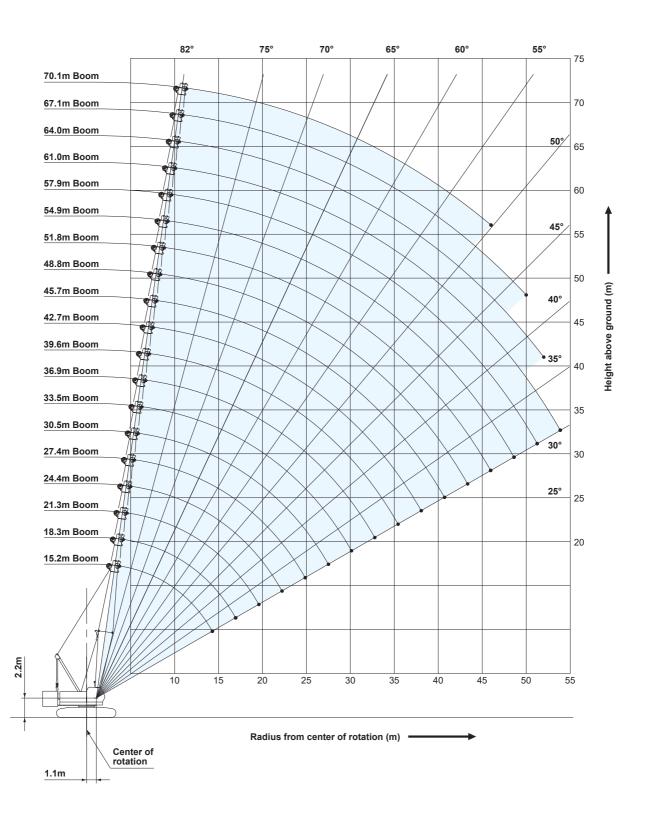

12.2 m

12.2 m

40

40A

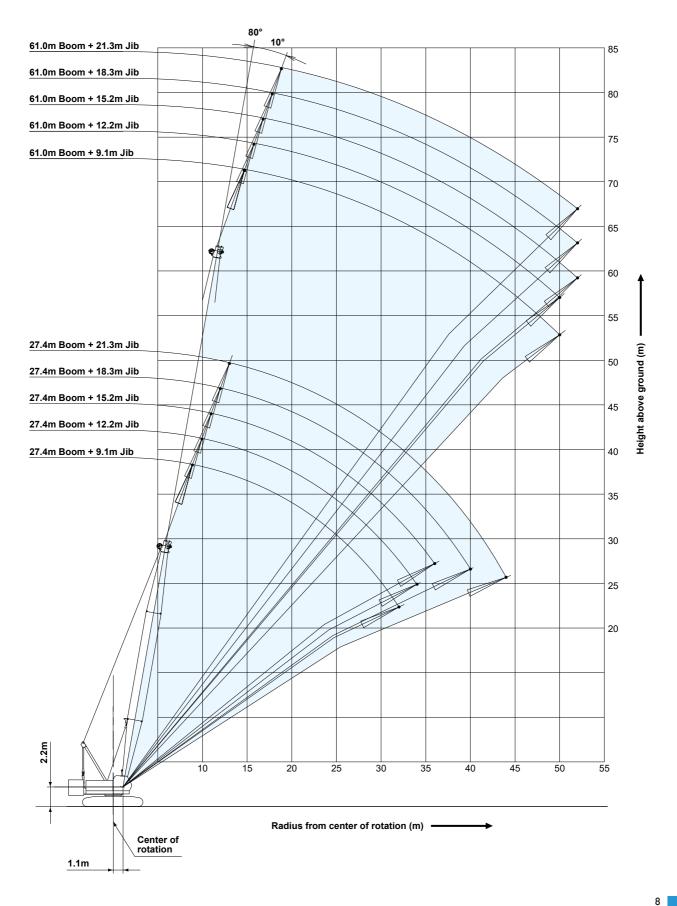
Fixed Jib Arrangements


Crane boom length	Jib length m (ft)	Jib arrangement
	9.1 (30)	
27.4 m ~ 61.0 m	12.2 (40)	B 10 T
	15.2 (50)	<u> </u>
	18.3 (60)	B 20 10 T
	21.3 (70)	B 10 10 20 T

Symbol	Jib Length	Remarks
В	4.6 m	Jib Base
I	4.6 m	Jib Top
10	3.0 m	Insert Jib
20	6.1 m	Insert Jib

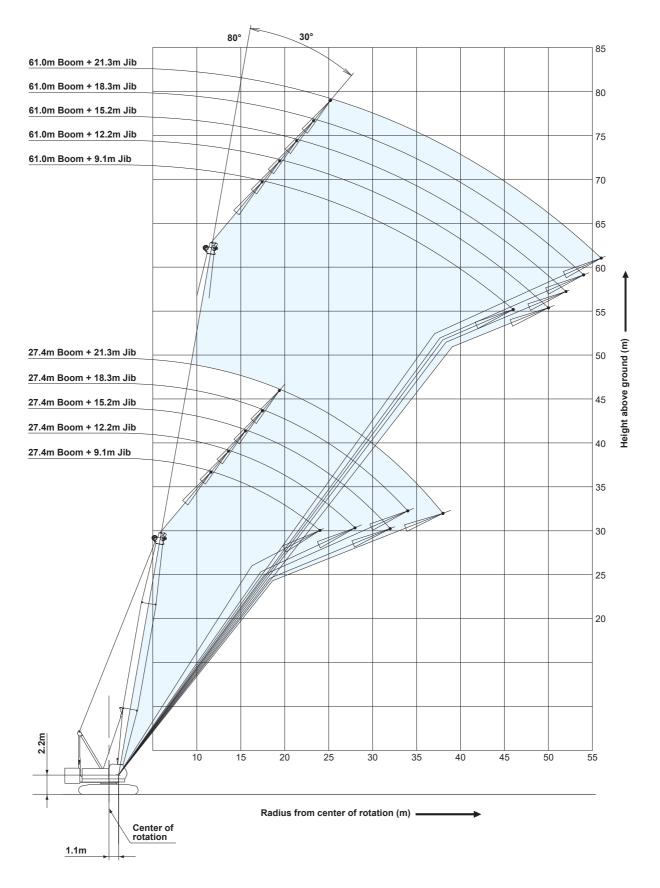
WORKING RANGES

Crane Boom


R

(909) 222-0202

Fixed Jib 10°


L,

WORKING RANGES

Fixed Jib 30°

Ŗ

SUPPLEMENTAL DATA

- •Ratings according to EN13000.
- Operating radius is the horizontal distance from centerline of rotation to a vertical line through the center of gravity of the load.
- Deduct weight of hook block (s), slings and all other load handling accessories from main boom ratings shown.
- Ratings shown are based on freely suspended loads and make no allowance for such factors as wind effect on lifted load, ground conditions, out-of-level, operating speeds or any other condition that could be detrimental to the safe operation of this equipment.
- The operator, therefore, has the responsibility to judge the existing conditions and reduce lifted loads and operating speeds accordingly.
- •Ratings are for operation on a firm and level surface, up to 1 % gradient.
- •At radii and boom lengths where no ratings are shown on chart, operation is not intended nor approved.
- •Boom inserts and guy lines must be arranged as shown in the "operator's manual".
- •Boom hoist reeving is 10 part line.
- ·Gantry must be in raised position for all conditions.
- ·Boom backstops are required for all boom lengths.
- •The boom should be erected over the front of the crawlers, not laterally.
- Ratings inside of boxes _____ are limited by strength of materials.
- •The minimum rated load is 1.5 (Ton).
- •Crawler frames must be fully extended for all crane operations.

(Crane boom lifting)

• The total load that can be lifted is the value for weight of main hook block, slings, and all other load handling accessories deducted from crane boom ratings shown.

(Fixed jib lifting)

- The total load that can be lifted is the value for weight of jib hook block, slings, and all other load handling accessories deducted from fixed jib ratings shown.
- •The availability of fixed jib mounting
 - On crane boom : Range 27.4 m to 61.0 m.

<Reference Information>

Main hoist loads

No. of Parts of Line	1	2	3	4	5
Maximum Loads (kN)	108	216	324	431	539
Maximum Loads (t)	11.0	22.0	33.0	44.0	55.0
No. of Parts of Line	6	7	8	9	10
Maximum Loads (kN)	647	755	863	971	1,079
Maximum Loads (t)	66.0	77.0	88.0	99.0	110.0

Auxiliary hoist loads

No. of Parts of Line	1	2
Maximum Loads (kN)	108	216
Maximum Loads (t)	11.0	22.0

Weight of hook block								
Hook Block 110 t 70 t 35 t Ball Hook								
Weight (t) 1.7 0.9 0.7 0.45								

Operation of this equipment in excess of rated loads or disregard of instruction voids the warranty.

3

Crane Boom Lifting Capacities

Counterweight: 34.6 t Carbody Weight: 6.5 t

										Unit	: metric ton
Boom Length Working (m) radius (m)	15.2	18.3	21.3	24.4	27.4	30.5	33.5	36.6	39.6	42.7	Boom Length (m) Working radius (m)
3.5	3.6m/110.0										3.5
4.0	98.6	4.1m/95.3	4.6m/86.0								4.0
5.0	77.7	77.7	77.7	77.0	5.5m/66.0	5.9m/58.9					5.0
6.0	62.2	62.2	62.2	62.2	60.7	58.2	6.4m/52.4	6.8m/47.1			6.0
7.0	53.3	53.2	53.2	53.1	51.2	49.4	47.6	46.0	7.3m/42.7	7.8m/38.9	7.0
8.0	44.5	44.4	44.4	44.2	44.2	42.7	41.4	40.1	38.9	37.7	8.0
9.0	37.6	37.5	37.4	37.3	37.3	37.2	36.5	35.5	34.5	33.5	9.0
10.0	32.5	32.4	32.3	32.2	32.2	32.1	32.0	31.7	30.9	30.1	10.0
12.0	25.5	25.3	25.2	25.1	25.1	24.9	24.9	24.8	24.7	24.6	12.0
14.0	20.8	20.7	20.6	20.4	20.4	20.3	20.2	20.1	20.0	19.9	14.0
16.0	14.4m/20.1	17.4	17.3	17.1	17.1	16.9	16.9	16.7	16.7	16.6	16.0
18.0		17.1m/16.0	14.8	14.7	14.6	14.5	14.4	14.3	14.2	14.1	18.0
20.0			19.7m/13.2	12.8	12.7	12.6	12.5	12.4	12.3	12.2	20.0
22.0				11.3	11.2	11.1	11.0	10.8	10.8	10.6	22.0
24.0				22.4m/11.1	10.0	9.8	9.8	9.6	9.5	9.4	24.0
26.0					25.0m/9.5	8.8	8.7	8.6	8.5	8.4	26.0
28.0						27.6m/8.1	7.9	7.7	7.6	7.5	28.0
30.0							7.2	7.0	6.9	6.8	30.0
32.0							30.3m/7.1	6.4	6.3	6.1	32.0
34.0								32.9m/6.1	5.7	5.6	34.0
36.0									35.6m/5.3	5.1	36.0
38.0										4.7	38.0
40.0										38.2m/4.6	40.0
Reeves	10	9	8	7	6	6	5	5	4	4	Reeves

Boom Length Working (m) radius (m)	45.7	48.8	51.8	54.9	57.9	61.0	64.0	67.1	70.1	Boom Length (m) Working radius (m)
8.0	8.2m/35.6	8.7m/32.9								8.0
9.0	32.4	31.7	9.1m/30.4	9.6m/28.1						9.0
10.0	29.1	28.5	27.7	27.0	26.1	10.5m/22.0	10.9m/22.0	11.4m/19.1	11.9m/15.0	10.0
12.0	24.0	23.6	23.0	22.4	21.7	21.4	20.8	18.4	14.9	12.0
14.0	19.8	19.7	19.4	18.9	18.4	18.2	17.6	16.5	13.1	14.0
16.0	16.4	16.4	16.3	16.1	15.8	15.6	15.2	14.8	11.7	16.0
18.0	13.9	13.9	13.8	13.6	13.5	13.5	13.2	12.8	10.4	18.0
20.0	12.0	12.0	11.9	11.7	11.6	11.6	11.4	11.3	9.3	20.0
22.0	10.5	10.5	10.3	10.2	10.0	10.1	9.9	9.8	8.3	22.0
24.0	9.2	9.2	9.1	8.9	8.8	8.8	8.6	8.5	7.5	24.0
26.0	8.2	8.2	8.0	7.9	7.7	7.7	7.6	7.5	6.7	26.0
28.0	7.3	7.3	7.2	7.0	6.9	6.9	6.7	6.6	6.0	28.0
30.0	6.6	6.5	6.4	6.3	6.1	6.1	6.0	5.8	5.3	30.0
32.0	5.9	5.9	5.8	5.6	5.5	5.5	5.3	5.2	4.7	32.0
34.0	5.4	5.3	5.2	5.0	4.9	4.9	4.7	4.6	4.2	34.0
36.0	4.9	4.8	4.7	4.6	4.4	4.4	4.2	4.1	3.7	36.0
38.0	4.5	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.2	38.0
40.0	4.1	4.0	3.9	3.7	3.5	3.5	3.3	3.2	2.7	40.0
42.0	40.8m/4.0	3.7	3.5	3.3	3.2	3.1	2.9	2.8	2.3	42.0
44.0		43.5m/3.5	3.2	3.0	2.8	2.8	2.6	2.4	1.9	44.0
46.0			2.9	2.7	2.5	2.5	2.3	2.1	1.6	46.0
48.0			46.1m/2.9	2.4	2.2	2.2	2.0	1.8		48.0
50.0				48.8m/2.3	2.0	1.9	1.7	1.6		50.0
52.0					51.4m/1.8	1.7	1.5			52.0
54.0						1.5				54.0
Reeves	4	3	3	3	3	2	2	2	2	Reeves

Note:

Ratings according to EN13000.

Ratings shown in are determined by the strength of the boom or other structural components. Lifting capacities may vary depending on hook used or with/without auxiliary sheave.

Please refer rated chart in operator's cabin.

Fixed Jib Lifting Capacities (Without Main Hook Block)
(Jib Offset Angle : 10°)

Counterweight: 34.6 t Carbody Weight: 6.5 t

					J. . .	•• /										Uni	t: metric to	n
Во	om length (m)			27.4					30.5					33.5			Boom length (m)
J	b length (m)	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	Jib length (m	1)
	10.0	10.9					10.9										10.0	
	12.0	10.9	10.9	10.9			10.9	10.9	10.9			10.9	10.9				12.0	
	14.0	10.9	10.9	10.9	9.8	7.1	10.9	10.9	10.9	9.9	7.1	10.9	10.9	10.9	9.9		14.0	
	16.0	10.9	10.9	10.9	9.6	6.9	10.9	10.9	10.9	9.7	6.9	10.9	10.9	10.9	9.7	7.0	16.0	
	18.0	10.9	10.9	10.2	8.9	6.7	10.9	10.9	10.7	9.3	6.8	10.9	10.9	10.9	9.5	6.8	18.0	
	20.0	10.9	10.9	9.2	8.0	6.5	10.9	10.9	9.7	8.4	6.6	10.9	10.9	10.2	8.8	6.7	20.0	
	22.0	10.9	10.2	8.4	7.3	6.4	10.9	10.9	8.9	7.6	6.5	10.9	10.9	9.3	8.0	6.5	22.0	
	24.0	10.1	9.4	7.7	6.7	6.0	10.0	10.0	8.2	7.0	6.3	9.9	10.0	8.6	7.4	6.4	24.0	
₂	26.0	9.1	8.7	7.2	6.2	5.5	8.9	9.1	7.6	6.5	5.8	8.8	9.0	8.0	6.8	6.1	26.0	5
radius (m)	28.0	8.2	8.1	6.7	5.7	5.1	8.0	8.2	7.0	6.0	5.4	7.9	8.1	7.4	6.3	5.6	28.0	Working radius (m)
adit	30.0	7.4	7.5	6.2	5.4	4.7	7.3	7.4	6.6	5.6	5.0	7.2	7.3	7.0	5.9	5.2	30.0	ing i
l Bu	32.0	6.8	6.9	5.9	5.0	4.4	6.6	6.7	6.2	5.3	4.7	6.5	6.6	6.5	5.6	4.9	32.0	adiu
Working	34.0		6.3	5.5	4.7	4.2	6.1	6.2	5.9	5.0	4.4	6.0	6.1	6.1	5.3	4.6	34.0	u) sr
\$	36.0			5.3	4.5	3.9		5.7	5.6	4.7	4.1	5.5	5.5	5.6	5.0	4.3	36.0	3
	38.0				4.2	3.7			5.3	4.5	3.9	5.0	5.1	5.2	4.7	4.1	38.0	
	40.0				4.0	3.5			4.9	4.3	3.7		4.7	4.8	4.5	3.9	40.0	
	42.0					3.3				4.1	3.5			4.4	4.3	3.7	42.0	
	44.0					3.2				3.9	3.4			4.1	4.1	3.5	44.0	
	46.0										3.2				3.8	3.4	46.0	
	48.0															3.3	48.0	
	50.0															3.1	50.0	
	Reeves	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Reeves	

Bo	om length (m)			36.6					39.6					42.7			Boom length	(m)
J	ib length (m)	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	Jib length (n	n)
	12.0	10.9	10.9				10.9					10.9					12.0	
	14.0	10.9	10.9	10.9	10.0		10.9	10.9	10.9			10.9	10.9	10.9			14.0	11
	16.0	10.9	10.9	10.9	9.8	7.0	10.9	10.9	10.9	9.8	7.1	10.9	10.9	10.9	9.9	7.1	16.0	
	18.0	10.9	10.9	10.9	9.6	6.9	10.9	10.9	10.9	9.7	6.9	10.9	10.9	10.9	9.7	6.9	18.0	
	20.0	10.9	10.9	10.6	9.1	6.7	10.9	10.9	10.9	9.5	6.8	10.9	10.9	10.9	9.6	6.8	20.0	
	22.0	10.9	10.9	9.7	8.3	6.6	10.9	10.9	10.1	8.7	6.6	10.8	10.9	10.5	9.0	6.7	22.0	1
	24.0	9.7	9.9	9.0	7.7	6.4	9.6	9.8	9.4	8.0	6.5	9.5	9.7	9.8	8.3	6.5	24.0	
	26.0	8.7	8.8	8.3	7.1	6.3	8.6	8.7	8.7	7.4	6.4	8.4	8.6	8.7	7.7	6.4	26.0	1
	28.0	7.8	7.9	7.8	6.6	5.9	7.7	7.8	7.9	6.9	6.1	7.6	7.7	7.8	7.2	6.3	28.0	
12	30.0	7.0	7.1	7.2	6.2	5.5	6.9	7.0	7.1	6.5	5.7	6.8	6.9	7.0	6.8	5.9	30.0	5
radius (m)	32.0	6.4	6.5	6.6	5.8	5.1	6.3	6.4	6.5	6.1	5.4	6.1	6.2	6.3	6.4	5.6	32.0	lork.
adiu	34.0	5.8	5.9	6.0	5.5	4.8	5.7	5.8	5.9	5.8	5.0	5.6	5.7	5.8	5.8	5.2	34.0	ng r
l Bu	36.0	5.3	5.4	5.5	5.2	4.6	5.2	5.3	5.4	5.4	4.8	5.0	5.2	5.2	5.3	5.0	36.0	adi
Working	38.0	4.9	4.9	5.0	4.9	4.3	4.7	4.8	4.9	5.0	4.5	4.6	4.7	4.8	4.9	4.7	38.0	Working radius (m
3	40.0	4.5	4.5	4.6	4.7	4.1	4.3	4.4	4.5	4.6	4.3	4.2	4.3	4.4	4.4	4.5	40.0	리
	42.0		4.2	4.3	4.3	3.9	4.0	4.1	4.1	4.2	4.1	3.8	3.9	4.0	4.1	4.1	42.0	
	44.0			3.9	4.0	3.7		3.7	3.8	3.9	3.9	3.5	3.6	3.7	3.7	3.8	44.0	
	46.0				3.7	3.6			3.5	3.6	3.6		3.3	3.4	3.4	3.5	46.0	
	48.0				3.4	3.4			3.2	3.3	3.3		3.1	3.1	3.2	3.2	48.0	
	50.0					3.2				3.0	3.1			2.9	2.9	3.0	50.0	
	52.0										2.9				2.7	2.7	52.0	
	54.0										2.6				2.5	2.5	54.0	
	56.0															2.3	56.0	
	Reeves	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Reeves	

Note:

J J

Ratings according to EN13000.

Ratings shown in ______ are determined by the strength of the boom or other structural components. Lifting capacities may vary depending on hook used or with/without auxiliary sheave. Please refer rated chart in operator's cabin.

Fixed Jib Lifting Capacities (Without Main Hook Block) (Jib Offset Angle : 10°)

Counterweight: 34.6 t Carbody Weight: 6.5 t

	(J	U di	ITSe	(Ang	gie :	10°)										Uni	t: metric ton
Вс	om length (m)			45.7					48.8					51.8			Boom length (m)
J	ib length (m)	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	Jib length (m)
	14.0	10.9	10.9				10.9	10.9				10.9					14.0
	16.0	10.9	10.9	10.9	9.9		10.9	10.9	10.9	10.0		10.9	10.9	10.9			16.0
	18.0	10.9	10.9	10.9	9.8	7.0	10.9	10.9	10.9	9.8	7.0	10.9	10.9	10.9	9.8	7.0	18.0
	20.0	10.9	10.9	10.9	9.6	6.8	10.9	10.9	10.9	9.6	6.9	10.9	10.9	10.9	9.7	6.9	20.0
	22.0	10.6	10.8	10.9	9.3	6.7	10.5	10.7	10.8	9.5	6.8	10.4	10.6	10.7	9.5	6.8	22.0
	24.0	9.3	9.5	9.6	8.6	6.6	9.3	9.4	9.5	8.9	6.6	9.1	9.3	9.4	9.2	6.7	24.0
	26.0	8.3	8.4	8.5	8.0	6.5	8.2	8.4	8.5	8.3	6.5	8.1	8.2	8.3	8.4	6.6	26.0
	28.0	7.4	7.5	7.6	7.5	6.4	7.3	7.4	7.6	7.6	6.4	7.2	7.3	7.4	7.5	6.5	28.0
	30.0	6.6	6.8	6.9	6.9	6.2	6.5	6.7	6.8	6.9	6.3	6.4	6.5	6.7	6.7	6.4	30.0
	32.0	6.0	6.1	6.2	6.3	5.8	5.9	6.0	6.1	6.2	6.0	5.7	5.9	6.0	6.1	6.1	32.0
Ē	34.0	5.4	5.5	5.6	5.7	5.5	5.3	5.4	5.5	5.6	5.6	5.2	5.3	5.4	5.5	5.5	34.0 §
lius	36.0	4.9	5.0	5.1	5.2	5.2	4.8	4.9	5.0	5.1	5.1	4.7	4.8	4.9	4.9	5.0	36.0
g rac	38.0	4.4	4.5	4.6	4.7	4.7	4.3	4.4	4.5	4.6	4.7	4.2	4.3	4.4	4.5	4.5	38.0 a
Working radius	40.0	4.0	4.1	4.2	4.3	4.3	3.9	4.0	4.1	4.2	4.2	3.8	3.9	4.0	4.1	4.1	34.0 Month 36.0 38.0 40.0 IIII 42.0 IIII
Å	42.0	3.7	3.8	3.8	3.9	4.0	3.6	3.7	3.8	3.8	3.9	3.4	3.5	3.6	3.7	3.7	42.0 $\widehat{\exists}$
	44.0	3.3	3.4	3.5	3.6	3.6	3.2	3.3	3.4	3.5	3.5	3.1	3.2	3.3	3.4	3.4	44.0
	46.0	3.1	3.1	3.2	3.3	3.3	3.0	3.0	3.1	3.2	3.2	2.8	2.9	3.0	3.1	3.1	46.0
	48.0	2.8	2.9	2.9	3.0	3.1	2.7	2.8	2.8	2.9	3.0	2.5	2.6	2.7	2.8	2.8	48.0
	50.0		2.6	2.7	2.8	2.8	2.4	2.5	2.6	2.7	2.7	2.2	2.3	2.4	2.5	2.5	50.0
	52.0			2.4	2.5	2.6		2.2	2.3	2.4	2.4	1.9	2.0	2.1	2.2	2.2	52.0
	54.0				2.3	2.3			2.0	2.1	2.2		1.8	1.9	1.9	2.0	54.0
	56.0				2.0	2.1			1.8	1.9	1.9		1.5	1.6	1.7	1.8	56.0
	58.0	-				1.9				1.7	1.7						58.0
	60.0										1.5						60.0
	Reeves	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Reeves

Во	om length (m)			54.9					57.9					61.0			Boom length	(m)
J	ib length (m)	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	Jib length (r	n)
	14.0	10.9															14.0	
	16.0	10.9	10.9	10.9			10.9	10.9				10.9	10.9				16.0	
	18.0	10.9	10.9	10.9	9.9	7.1	10.9	10.9	10.9	9.9		10.9	10.9	10.9	9.9		18.0	
	20.0	10.9	10.9	10.9	9.7	6.9	10.9	10.9	10.9	9.8	7.0	10.9	10.8	10.8	9.8	7.0	20.0	
	22.0	10.3	10.5	10.6	9.6	6.8	10.1	10.3	10.5	9.6	6.8	10.1	10.3	10.4	9.7	6.9	22.0	
	24.0	9.0	9.2	9.3	9.4	6.7	8.9	9.0	9.2	9.3	6.7	8.8	9.0	9.1	9.2	6.8	24.0]
	26.0	7.9	8.1	8.2	8.3	6.6	7.8	8.0	8.1	8.2	6.6	7.7	7.9	8.0	8.1	6.7	26.0	
	28.0	7.0	7.2	7.3	7.4	6.5	6.9	7.0	7.2	7.3	6.5	6.8	7.0	7.1	7.2	6.6	28.0]
	30.0	6.3	6.4	6.5	6.6	6.4	6.1	6.3	6.4	6.5	6.4	6.1	6.2	6.3	6.4	6.5	30.0	
E	32.0	5.6	5.7	5.8	5.9	6.0	5.4	5.6	5.7	5.8	5.8	5.4	5.5	5.6	5.7	5.8	32.0	₹
radius	34.0	5.0	5.1	5.2	5.3	5.4	4.9	5.0	5.1	5.2	5.2	4.8	4.9	5.0	5.1	5.2	34.0	Working radius
lac	36.0	4.5	4.6	4.7	4.8	4.9	4.4	4.5	4.6	4.7	4.7	4.3	4.4	4.5	4.6	4.6	36.0	grad
Working	38.0	4.1	4.2	4.3	4.3	4.4	3.9	4.0	4.1	4.2	4.3	3.8	3.9	4.0	4.1	4.2	38.0	lius
Ň	40.0	3.6	3.8	3.9	3.9	4.0	3.5	3.6	3.7	3.8	3.8	3.4	3.5	3.6	3.7	3.8	40.0	E
	42.0	3.3	3.4	3.5	3.6	3.6	3.1	3.2	3.3	3.4	3.5	3.0	3.1	3.3	3.3	3.4	42.0	
	44.0	2.9	3.1	3.1	3.2	3.3	2.7	2.9	3.0	3.1	3.1	2.6	2.7	2.9	3.0	3.0	44.0	
	46.0	2.6	2.7	2.8	2.9	3.0	2.4	2.5	2.6	2.7	2.8	2.2	2.4	2.5	2.6	2.7	46.0	
	48.0	2.2	2.4	2.5	2.6	2.6	2.0	2.2	2.3	2.4	2.4	1.9	2.1	2.2	2.3	2.3	48.0]
	50.0	2.0	2.1	2.2	2.3	2.3	1.7	1.9	2.0	2.1	2.1	1.6	1.8	1.9	2.0	2.0	50.0	1
	52.0	1.7	1.8	1.9	2.0	2.1		1.6	1.7	1.8	1.8			1.6	1.7	1.7	52.0	1
	54.0		1.6	1.7	1.7	1.8				1.5	1.6						54.0	
	56.0				1.5	1.6											56.0]
	Reeves	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Reeves	

Note:

Ratings according to EN13000.

Ratings shown in _____ are determined by the strength of the boom or other structural components.

Lifting capacities may vary depending on hook used or with/without auxiliary sheave.

Please refer rated chart in operator's cabin.

						- - -	citie	s (W i	ithou	it Ma	ain H	look	Bloc	ck)			ght: 34.6 t eight: 6.5 t
	()	U di	ffse	. Ang	gie :	JUJ										Uni	it: metric ton
Во	om length (m)			27.4					30.5					33.5			Boom length (m)
J	b length (m)	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	Jib length (m)
	12.0	9.5															12.0
	14.0	9.5	7.0				9.5					9.5					14.0
	16.0	9.5	7.0	5.2			9.5	7.0				9.5	7.0				16.0
	18.0	9.5	7.0	5.2	4.2		9.5	7.0	5.2			9.5	7.0	5.2			18.0
	20.0	9.5	7.0	5.2	4.2	4.2	9.5	7.0	5.2	4.2		9.5	7.0	5.2	4.2		20.0
2	22.0	9.1	6.7	5.2	4.2	4.0	9.4	6.9	5.2	4.2	4.1	9.5	7.0	5.2	4.2	4.1	22.0 🗧
Working radius (m)	24.0	8.6	6.4	5.1	4.2	3.7	8.9	6.5	5.2	4.2	3.8	9.2	6.7	5.2	4.2	3.9	22.0 Working radius (m) 26.0 28.0 30.0 (m)
adit	26.0		6.1	4.9	4.1	3.5	8.6	6.3	5.0	4.2	3.6	8.8	6.4	5.1	4.2	3.7	26.0 ^a
1 Bu	28.0		5.8	4.6	3.9	3.3	8.2	6.0	4.8	4.0	3.4	8.1	6.2	4.9	4.1	3.5	28.0 adi
Pri V	30.0			4.5	3.7	3.2		5.8	4.6	3.8	3.3	7.3	6.0	4.7	3.9	3.3	30.0 ⁵
15	32.0			4.3	3.6	3.0			4.4	3.7	3.1		5.8	4.5	3.8	3.2	32.0 3
	34.0				3.4	2.9				3.5	3.0			4.4	3.6	3.1	34.0
	36.0					2.8				3.4	2.9				3.5	3.0	36.0
	38.0					2.7					2.8				3.4	2.9	38.0
	40.0															2.8	40.0
	Reeves	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Reeves

в	oom length (m)			36.6					39.6					42.7			Boom length (m)
.	lib length (m)	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	Jib length (m)
Γ	14.0	9.5					9.5										14.0
	16.0	9.5	7.0				9.5	7.0				9.5					16.0
	18.0	9.5	7.0	5.2			9.5	7.0	5.2			9.5	7.0				18.0
	20.0	9.5	7.0	5.2	4.2		9.5	7.0	5.2	4.2		9.5	7.0	5.2			20.0
	22.0	9.5	7.0	5.2	4.2	4.2	9.5	7.0	5.2	4.2	4.2	9.5	7.0	5.2	4.2		22.0
	24.0	9.5	6.9	5.2	4.2	4.0	9.5	7.0	5.2	4.2	4.0	9.5	7.0	5.2	4.2	4.1	24.0
_@	26.0	8.9	6.6	5.2	4.2	3.8	8.8	6.7	5.2	4.2	3.8	8.7	6.9	5.2	4.2	3.9	26.0 >
radius (m)	28.0	8.0	6.3	5.0	4.2	3.6	7.9	6.5	5.1	4.2	3.6	7.8	6.6	5.2	4.2	3.7	28.0 옷
adit	30.0	7.2	6.1	4.8	4.0	3.4	7.1	6.3	4.9	4.1	3.5	7.0	6.4	5.0	4.2	3.6	30.0
l Bu	32.0	6.5	5.9	4.7	3.8	3.3	6.4	6.1	4.8	3.9	3.3	6.3	6.2	4.9	4.0	3.4	32.0 ਬੂੰ
Working	34.0		5.7	4.5	3.7	3.1		5.9	4.6	3.8	3.2	5.7	5.9	4.7	3.9	3.3	28.0 Working radius (m) 30.0 32.0 34.0 (m)
3	36.0			4.4	3.6	3.0		5.4	4.5	3.7	3.1	5.2	5.3	4.6	3.7	3.2	36.0 3
	38.0			4.2	3.5	2.9			4.3	3.5	3.0		4.9	4.4	3.6	3.1	38.0
	40.0				3.4	2.8				3.4	2.9			4.3	3.5	3.0	40.0
	42.0					2.7				3.4	2.8				3.4	2.9	42.0
	44.0					2.7					2.7				3.3	2.8	44.0
	46.0															2.7	46.0
	Reeves	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Reeves

Note:

N N

Ratings according to EN13000.

Ratings shown in _____ are determined by the strength of the boom or other structural components. Lifting capacities may vary depending on hook used or with/without auxiliary sheave.

Please refer rated chart in operator's cabin.

Fixed Jib Lifting Capacities (Without Main Hook Block) (Jib Offset Angle : 30°)

Counterweight: 34.6 t Carbody Weight: 6.5 t

Unit: metric ton

																011	t. mouno tom
в	oom length (m)			45.7					48.8					51.8			Boom length (m)
	lib length (m)	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	Jib length (m)
Γ	16.0	9.5					9.5					9.5					16.0
	18.0	9.5	7.0				9.5	7.0				9.5	7.0				18.0
	20.0	9.5	7.0	5.2			9.5	7.0	5.2			9.5	7.0	5.2			20.0
	22.0	9.5	7.0	5.2	4.2		9.5	7.0	5.2	4.2		9.5	7.0	5.2	4.2		22.0
	24.0	9.5	7.0	5.2	4.2	4.1	9.5	7.0	5.2	4.2	4.2	9.5	7.0	5.2	4.2	4.2	24.0
	26.0	8.6	7.0	5.2	4.2	3.9	8.5	7.0	5.2	4.2	4.0	8.4	7.0	5.2	4.2	4.0	26.0
	28.0	7.6	6.8	5.2	4.2	3.8	7.6	6.9	5.2	4.2	3.8	7.4	7.0	5.2	4.2	3.9	28.0
_	30.0	6.8	6.5	5.1	4.2	3.6	6.8	6.7	5.2	4.2	3.7	6.7	6.8	5.2	4.2	3.7	30.0 🤿
radius (m)	32.0	6.1	6.3	5.0	4.1	3.5	6.1	6.3	5.0	4.1	3.5	6.0	6.2	5.1	4.2	3.6	30.0 Working radius 32.0 34.0 36.0 38.0 (m) 10.0
adiu	34.0	5.5	5.7	4.8	3.9	3.3	5.5	5.7	4.9	4.0	3.4	5.4	5.6	5.0	4.1	3.4	34.0 ^{ng}
	36.0	5.0	5.2	4.7	3.8	3.2	4.9	5.1	4.7	3.9	3.3	4.8	5.0	4.8	3.9	3.3	36.0
Working	38.0	4.6	4.7	4.5	3.7	3.1	4.5	4.6	4.6	3.8	3.2	4.4	4.5	4.7	3.8	3.2	38.0 ¹⁵
>	40.0			4.4	3.6	3.0		4.2	4.4	3.7	3.1	3.9	4.1	4.2	3.7	3.1	40.0 ³
	42.0			4.0	3.5	2.9		3.8	4.0	3.6	3.0		3.7	3.9	3.6	3.0	42.0
	44.0				3.4	2.8			3.6	3.5	2.9		3.4	3.5	3.5	2.9	44.0
	46.0					2.8				3.4	2.8			3.2	3.3	2.9	46.0
	48.0					2.7				3.1	2.7				3.0	2.8	48.0
	50.0					2.6					2.7				2.7	2.7	50.0
	52.0															2.5	52.0
	Reeves	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Reeves

Во	om length (m)			54.9					57.9					61.0			Boom length	(m)
J	b length (m)	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	9.1	12.2	15.2	18.3	21.3	Jib length (n	n)
	18.0	9.5					9.5					9.5					18.0	
	20.0	9.5	7.0				9.5	7.0				9.5	7.0				20.0	
	22.0	9.5	7.0	5.2			9.5	7.0	5.2			9.5	7.0	5.2			22.0	
	24.0	9.4	7.0	5.2	4.2		9.3	7.0	5.2	4.2		9.2	7.0	5.2	4.2		24.0	
	26.0	8.3	7.0	5.2	4.2	4.1	8.1	7.0	5.2	4.2	4.1	8.1	7.0	5.2	4.2	4.1	26.0	
	28.0	7.3	7.0	5.2	4.2	3.9	7.2	7.0	5.2	4.2	4.0	7.1	7.0	5.2	4.2	4.0	28.0	
	30.0	6.5	6.8	5.2	4.2	3.8	6.4	6.6	5.2	4.2	3.8	6.3	6.6	5.2	4.2	3.8	30.0	
	32.0	5.8	6.0	5.2	4.2	3.6	5.7	5.9	5.2	4.2	3.7	5.6	5.9	5.2	4.2	3.7	32.0	
Ē	34.0	5.2	5.4	5.0	4.1	3.5	5.1	5.3	5.1	4.2	3.5	5.0	5.3	5.2	4.2	3.6	34.0	No
radius	36.0	4.7	4.9	4.9	4.0	3.4	4.6	4.8	4.9	4.1	3.4	4.5	4.7	4.9	4.1	3.5	36.0	Working radius
	38.0	4.2	4.4	4.6	3.9	3.3	4.1	4.3	4.4	3.9	3.3	4.0	4.2	4.4	4.0	3.4	38.0	grad
Working	40.0	3.8	4.0	4.1	3.8	3.2	3.7	3.8	4.0	3.8	3.2	3.6	3.8	3.9	3.9	3.3	40.0	
N N	42.0	3.4	3.6	3.7	3.7	3.1	3.3	3.4	3.6	3.7	3.1	3.2	3.4	3.5	3.7	3.2	42.0	Ξ
	44.0	3.1	3.2	3.4	3.5	3.0	2.9	3.1	3.2	3.4	3.0	2.8	3.0	3.2	3.3	3.1	44.0	
	46.0			3.0	3.2	2.9		2.7	2.9	3.0	3.0	2.4	2.6	2.8	3.0	3.0	46.0	
	48.0			2.7	2.9	2.8			2.6	2.7	2.9		2.3	2.5	2.6	2.8	48.0	
	50.0				2.6	2.7			2.2	2.4	2.5		2.0	2.1	2.3	2.4	50.0	
	52.0					2.4				2.1	2.2			1.8	2.0	2.1	52.0	
	54.0					2.1					1.9				1.7	1.8	54.0	
	56.0										1.7					1.6	56.0	
	Reeves	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Reeves	

Note:

N N

Ratings according to EN13000.

Ratings shown in _____ are determined by the strength of the boom or other structural components.

Lifting capacities may vary depending on hook used or with/without auxiliary sheave.

Please refer rated chart in operator's cabin.

SUPPLEMENTAL DATA FOR CLAMSHELL RATING CHART

- Operating radius is the horizontal distance from centerline of rotation to a vertical line through the center of gravity of the load.
- •Deduct weight of bucket, slings and all other load handling accessories from main boom ratings shown.
- Ratings shown are based on freely suspended loads and make no allowance for such factors as wind effect on lifted load, ground conditions, out-of-level, operating speeds or any other condition that could be detrimental to the safe operation of this equipment. The operator, therefore, has the responsibility to judge the existing conditions and reduce lifted loads and operating speeds accordingly.
- •Rated loads do not exceed 66% of minimum tipping loads.
- •Ratings are for operation on a firm and level surface, up to 1% gradient.
- •At radii and boom lengths where no ratings are shown on chart, operation is not intended nor approved.
- •Boom inserts and guy lines must be arranged as shown in the "operator's manual".
- •Boom hoist reeving is 10 part line.
- ·Gantry must be in raised position for all conditions.
- •Boom backstops are required for all boom lengths.
- •The boom should be erected over the front of the crawlers, not laterally.
- Crawler frames must be fully extended for all crane operations.

(Clamshell bucket lifting)

- The total load that can be lifted is the value for weight of bucket, slings, and all other load handling accessories deducted from main boom ratings shown.
- •The weight of bucket and materials must not exceed rated load.
- •Optimum bucket should be required according to material.
- •Bucket capacity (m³) x specified gravity of material (ton/m³) + bucket weight (ton) = rated load.
- •Bucket weight must also be decreased according to operating cycle and bucket lowering height.
- •Rated loads are determined by stability and boom strength. During simultaneous operations of boom and swing, rapid acceleration or deceleration must be avoided.
- •Do not attempt to cast the bucket while swinging or diagonal draw-cutting.

<Reference Information>

Main hoist loads

No. of Parts of Line	1
Maximum Loads (kN)	98
Maximum Loads (t)	10.0

Assembling the counterweight

ton counterw out carbody w											
	No.3										
No.1											
Counterweights											
Carbody weights											
	ut carbody w No.1										

Operation of this equipment in excess of rated loads or disregard of instruction voids the warranty.

Cı		ell Rat oom C			Counterweight: 23.1 t Without Carbody Weight Crawler Fully Extended Unit: metric ton
Boom length Load (m) radius (m)	15.2	18.3	21.3	24.4	Boom length (m) Load radius (m)
7.0	10.0				7.0
8.0	10.0	10.0			8.0
9.0	10.0	10.0	10.0		9.0
10.0	10.0	10.0	10.0	9.4	10.0
11.0	10.0	10.0	10.0	9.3	11.0
12.0	10.0	10.0	10.0	9.3	12.0
13.0	10.0	10.0	10.0	9.3	13.0
14.0	10.0	10.0	10.0	9.3	14.0
15.0		10.0	10.0	9.3	15.0
16.0		9.8	9.9	9.0	16.0
17.0			9.3	8.8	17.0
18.0			8.6	8.6	18.0
19.0			7.9	8.2	19.0
20.0				7.6	20.0
21.0				7.1	21.0
22.0					22.0
23.0					23.0
24.0					24.0
25.0					25.0
26.0					26.0
27.0					27.0
28.0					28.0
29.0					29.0
30.0					30.0
31.0					31.0
32.0					32.0
33.0					33.0
Reeves	1	1	1	1	Reeves

Note:

R

Please refer rated chart in operator's cabin.

SUPPLEMENTAL DATA FOR REDUCED WEIGHTS RATING CHART

- •Ratings according to EN13000.
- Operating radius is the horizontal distance from centerline of rotation to a vertical line through the center of gravity of the load.
- Deduct weight of hook block(s), slings and all other load handling accessories from main boom ratings shown.
- Ratings shown are based on freely suspended loads and make no allowance for such factors as wind effect on lifted load, ground conditions, out-of-level, operating speeds or any other condition that could be detrimental to the safe operation of this equipment. The operator, therefore, has the responsibility to judge the existing conditions and reduce lifted loads and operating speeds accordingly.
- •Ratings are for operation on a firm and level surface, up to 1% gradient.
- •At radii and boom lengths where no ratings are shown on chart, operation is not intended nor approved.
- •Boom inserts and guy lines must be arranged as shown in the "operator's manual".
- •Boom hoist reeving is 10 part line.
- ·Gantry must be in raised position for all conditions.
- ·Boom backstops are required for all boom lengths.
- •The boom should be erected over the front of the crawlers, not laterally.
- •Ratings inside of boxes _____ are limited by strength of materials.
- •The minimum rated load is 1.5 (ton).
- •Crawler frames must be fully extended for all crane operations.

(Crane boom lifting)

•The total load that can be lifted is the value for weight of hook block, slings, and all other load handling accessories deducted from main boom ratings shown.

Countorwoight	Carbody weight	Boom lenght			
Counterweight	Carbody weight	Without aux.	With aux.		
23.1 ton	Without	15.2 m \sim 57.9 m	15.2 m \sim 54.9 m		

Assembling the counterweight

23.1 ton counterweight

witho	out carbody w	/eight							
No.2		No.3							
	No.1								
C	Counterweights								
Carbody weights									

<Reference Information>

Main hoist loads

main noise isaas					
No. of Parts of Line	1	2	3	4	5
Maximum Loads (kN)	108	216	324	431	539
Maximum Loads (t)	11.0	22.0	33.0	44.0	55.0
No. of Parts of Line	6	7	8	9	10
Maximum Loads (kN)	647	755	863	971	1,079
Maximum Loads (t)	66.0	77.0	88.0	99.0	110.0

Auxiliary hoist loads

No. of Parts of Line	1	2
Maximum Loads (kN)	108	216
Maximum Loads (t)	11.0	22.0

Weight of hook block								
Hook Block	110 t	70 t	35 t	Ball Hook				
Weight (t)	1.7	0.9	0.7	0.45				

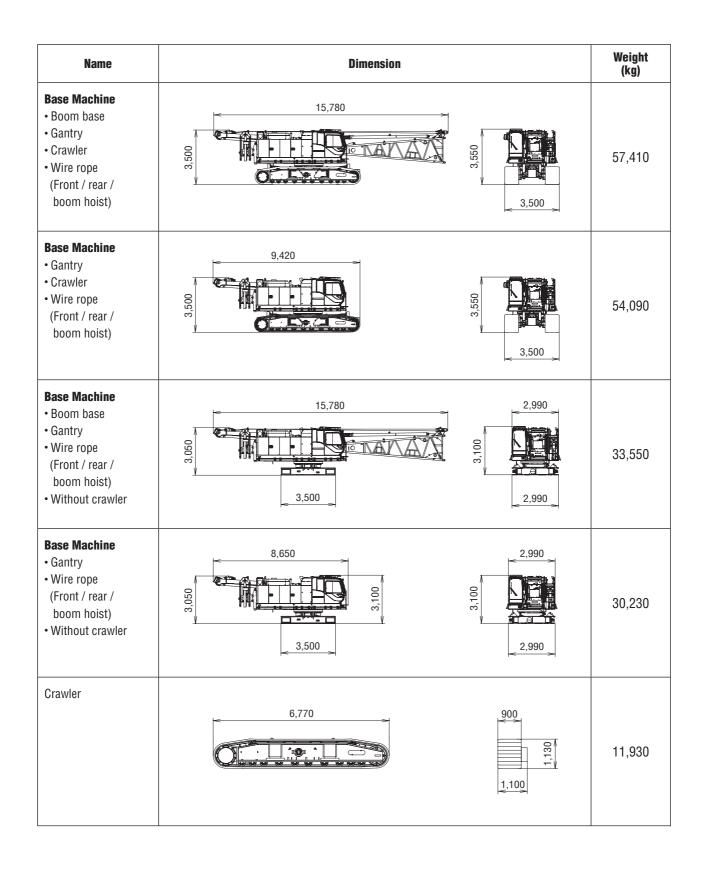
Operation of this equipment in excess of rated loads	
or disregard of instruction voids the warranty.	

3

Reduced Weights Rating Charts Counterweight: 2 Without Carbody W Crawler Fully Exter Unit: met											
Boom length Working (m) radius (m)	15.2	18.3	21.3	24.4	27.4	30.5	33.5	36.6	39.6	42.7	Boom length (m) Workin radius (m
3.5	3.6m/94.2										3.5
4.0	85.3	4.1m/83.3									4.0
4.5	76.2	75.7	4.6m/69.2								4.5
5.0	68.9	66.0	62.3	59.1							5.0
5.5	58.9	58.4	55.5	52.8	5.5m/50.4	5.9m/44.6					5.5
6.0	50.8	50.4	49.9	47.8	45.7	43.8	6.4m/39.2	6.8m/35.4			6.0
7.0	39.6	39.3	39.0	38.7	38.4	37.0	35.6	34.4	7.3m/31.7	7.8m/28.6	7.0
8.0	32.3	32.3	32.2	32.1	32.0	31.9	30.8	29.9	28.8	27.9	8.0
9.0	27.2	27.2	27.2	27.2	27.2	27.1	27.0	26.3	25.4	24.7	9.0
10.0	23.5	23.5	23.5	23.5	23.4	23.3	23.2	23.2	22.7	22.0	10.0
12.0	18.2	18.2	18.2	18.2	18.1	18.0	18.0	17.9	17.9	17.7	12.0
14.0	14.8	14.8	14.8	14.8	14.7	14.6	14.5	14.4	14.4	14.2	14.0
16.0	14.4m/14.3	12.5	12.4	12.3	12.2	12.1	12.0	12.0	11.9	11.8	16.0
18.0		17.1m/11.5	10.6	10.5	10.4	10.3	10.2	10.1	10.0	9.9	18.0
20.0			19.7m/9.4	9.1	9.0	8.9	8.7	8.7	8.6	8.5	20.0
22.0				8.0	7.9	7.7	7.6	7.6	7.5	7.4	22.0
24.0				22.4m/7.8	7.0	6.8	6.7	6.7	6.6	6.4	24.0
26.0					25.0m/6.5	6.1	5.9	5.9	5.8	5.7	26.0
28.0						27.6m/5.6	5.3	5.3	5.1	5.0	28.0
30.0							4.8	4.7	4.6	4.5	30.0
32.0							30.3m/4.6	4.3	4.1	4.0	32.0
34.0								32.9m/4.1	3.7	3.5	34.0
36.0									35.6m/3.3	3.1	36.0
38.0										2.8	38.0
40.0										38.2m/2.6	40.0
42.0											42.0
44.0											44.0
Reeves	10	8	7	6	5	5	4	4	3	3	Reeves

Boom length Working (m) radius (m)	45.7	48.8	51.8	54.9	57.9			Boom length (m) Working radius (m)
8.0	8.2m/26.3	8.7m/24.0						8.0
9.0	23.9	23.2	9.1m/22.2	9.6m/20.3				9.0
10.0	21.3	20.8	20.1	19.5	18.9			10.0
12.0	17.4	17.0	16.5	16.0	15.5			12.0
14.0	14.1	14.0	13.8	13.4	13.0			14.0
16.0	11.6	11.6	11.4	11.4	11.0			16.0
18.0	9.8	9.7	9.6	9.6	9.4			18.0
20.0	8.3	8.3	8.1	8.1	8.0			20.0
22.0	7.2	7.1	7.0	7.0	6.8			22.0
24.0	6.3	6.2	6.1	6.0	5.9			24.0
26.0	5.5	5.4	5.3	5.3	5.1			26.0
28.0	4.9	4.8	4.6	4.6	4.5			28.0
30.0	4.3	4.2	4.1	4.0	3.8			30.0
32.0	3.8	3.7	3.5	3.5	3.3			32.0
34.0	3.3	3.3	3.1	3.0	2.8			34.0
36.0	2.9	2.9	2.7	2.6	2.4			36.0
38.0	2.6	2.5	2.3	2.2	2.1			38.0
40.0	2.2	2.2	2.0	1.9	1.7			40.0
42.0	40.8m/2.1	1.9	1.7	1.6				42.0
44.0		43.5m/1.6						44.0
46.0								46.0
48.0								48.0
50.0								50.0
52.0								52.0
54.0								54.0
56.0								56.0
58.0								58.0
Reeves	3	3	3	2	2			Reeves

Note:

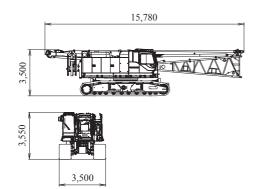

Ratings according to EN13000.

Ratings shown in _____ are determined by the strength of the boom or other structural components.

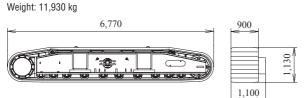
Lifting capacities may vary depending on hook used or with/without auxiliary sheave.

Please refer rated chart in operator's cabin.

TRANSPORTATION PLAN

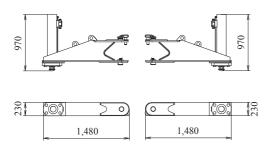


PARTS AND ATTACHMENTS

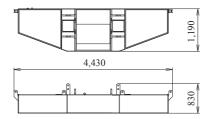

Base Machine

N N

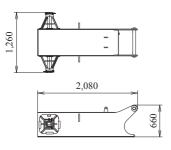
Boom base, Gantry, Crawler, Wire rope (Front/rear/boom hoist) Weight: 57,410 kg Width: 3,500 mm

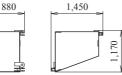


Crawler

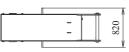

Translifter

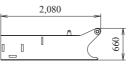
Weight: 320 kg / 1 piece


Counterweight No.1

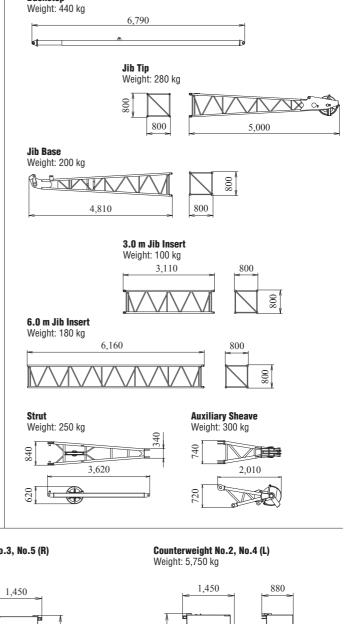


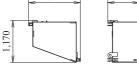
Carbody Weight (With float)

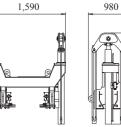

Weight: 3,320 kg / 1 piece

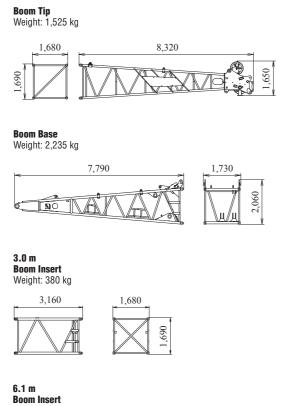


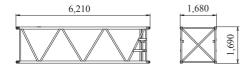
Counterweight No.3, No.5 (R) Weight: 5,750 kg



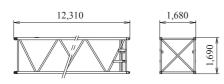

Carbody Weight (Without float) Weight: 3,250 kg / 1 piece




Backstop

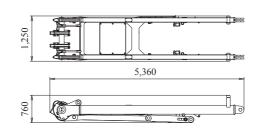


Self Removal Unit Weight: 870 kg

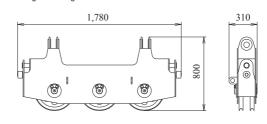


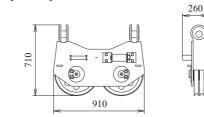
Weight: 655 kg

12.2 m **Boom Insert** Weight: 1,195 kg



12.2 m Boom Insert (with Lug) Weight: 1,220 kg




Gantry Weight: 1,320 kg

Upper Spreader Weight: 300 kg

Lower Spreader Weight: 200 kg

Ball Hook Weight: 450 kg

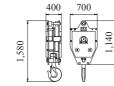
380

Ø

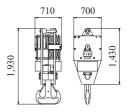
1,210

70 t Hook

,820


Weight: 900 kg

390


700

1,250

35 t Hook Weight: 700 kg

110 t Hook Weight: 1,700 kg

Note: This catalog may contain photographs of machines with specifications, attachments and optional equipment not certified for operation in your country. Please consult KOBELCO for those items you may require. Due to our policy of continual product improvements all designs and specifications are subject to change without advance notice.

Copyright by KOBELCO CRANES CO., LTD. No part of this catalog may be reproduced in any manner without notice.

17-1, Higashigotanda 2-chome, Shinagawa-ku,Tokyo 141-8626 JAPAN Tel: +81-3-5789-2130 Fax: +81-3-5789-3372 **URL: http://www.kobelco-cranes.com/** Inquiries To:

KOBELCO is the corporate mark used by Kobe Steel on a variety of products and in the names of a number of Kobe Steel Group companies.

Bulletin No. CKE1100G-SPEC-EU2

120301F Printed in Japan

CE